Ces systèmes courts permettent des réactions rapides – il convient de ne pas laisser trop longtemps ses doigts sur une plaque brûlante! – mais peu élaborées. La contraction de la cuisse se fait de façon automatique et brutale, même si un obstacle est présent devant le pied; en revanche, l'exécution d'un morceau de piano suppose des connexions très complexes à cause du nombre de muscles qu'il convient à chaque instant de contracter et de décontracter, et de la nécessité d'enchaîner harmonieusement des commandes pour aboutir au rythme de la mélodie, voire à son interprétation artistique.

 

 

Des circuits neuronaux en boucle

Ce dernier exemple conduit à une autre caractéristique fondamentale du fonctionnement cérébral: le système de boucles à chaque étape. En effet, à chaque relais une partie des fibres et des connexions revient vers l'étape précédente pour l'informer et la rétrocontrôler (feed-back), et lors de la sortie finale les sens enregistrent l'action, la rectifient ou l'ajustent jusqu'au dernier instant: ces boucles nous permettent de marcher, et non de sauter d'un point à l'autre comme des pantins désarticulés, de garder notre équilibre lorsque nous marchons contre le vent, lors d'un match de tennis de retourner une balle à laquelle l'adversaire aurait donné un effet inattendu.

 

 

 

Développement embryonnaire du cerveau

Comment cette incroyable machinerie de plusieurs centaines de milliards de cellules, connectées entre elles de façon précise et reproductible, se met-elle en place d'un individu à l'autre? C'est l'un des sujets les plus brûlants de la neurobiologie actuelle, car il ouvre non seulement sur une meilleure compréhension de notre cerveau, mais également sur la connaissance de nombreuses maladies liées à des anomalies de l'organisation cérébrale.

 

L'origine du système nerveux se situe dans une couche de cellules situées sur la partie dorsale de l'embryon, la plaque neurale. Ce tissu se creuse en une gouttière, le tube neural, d'où se différencient trois excroissances qui donneront les trois compartiments cérébraux: télencéphale (futurs hémisphères et structures sous-corticales), mésencéphale (futur tronc cérébral), rhombencéphale (avec l'ébauche du cervelet). Au-delà des observations morphologiques, c'est la compréhension du programme – déterminant la différenciation des neurones et des cellules gliales, leur migration vers leur place définitive, ainsi que les formations des connexions spécifiques – qui constitue le sujet d'étude des neurobiologistes du développement.

 

 

Le programme de développement du système nerveux

Ce programme comprend 8 stades: l'induction de la plaque neurale, la prolifération cellulaire, la migration des cellules vers leur emplacement définitif, leur agrégation en structures identifiables dans le cerveau, la différenciation des cellules immatures en cellules matures, l'établissement de connexions, la mort de certaines cellules et l'élimination de certaines connexions.

 

 

En fait, lors de la vie embryonnaire et chez le jeune enfant, certaines de ces étapes se superposent et sont décalées dans le temps selon le type cellulaire et la région cérébrale concernée. Par exemple, les oligodendrocytes ne se différencient qu'après la naissance, et la myélinisation (synthèse de la myéline pour favoriser la conduction de l'influx nerveux) ne se fait qu'au cours des premiers mois de la vie.

 

Autre exemple, une structure comme le cervelet ne se développe réellement qu'après la naissance, et de nombreux neurones continuent à se multiplier au niveau de sa couche la plus superficielle durant les premières semaines de la vie.

 


Un développement lent et long du système nerveux, caractéristique essentielle des mammifères, permet un apprentissage particulièrement important, qui trouve sa plus grande expression chez les primates, et bien sûr de façon encore plus développée chez l'homme.

 

 

Sélection de cellules nerveuses et stabilisation

Initialement, le nombre de cellules et de contacts synaptiques est très supérieur à celui existant à l'âge adulte. L'un des principes du développement cérébral, la stabilisation sélective, repose en effet sur la sélection de certaines cellules et de certains contacts intercellulaires. Sélection et stabilisation sont génétiquement programmées, mais la détermination finale de la cellule sélectionnée ou du contact stabilisé est le fruit des interactions avec l'environnement, de l'apprentissage sous toutes ses formes.